Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256845

RESUMO

Black knot (BK) is a deadly disease of European (Prunus domestica) and Japanese (Prunus salicina) plums caused by the hemibiotrophic fungus Apiosporina morbosa. Generally, phytopathogens hamper the balance of primary defense phytohormones, such as salicylic acid (SA)-jasmonic acid (JA) balance, for disease progression. Thus, we quantified the important phytohormone titers in tissues of susceptible and resistant genotypes belonging to European and Japanese plums at five different time points. Our previous results suggested that auxin-cytokinins interplay driven by A. morbosa appeared to be vital in disease progression by hampering the plant defense system. Here, we further show that such hampering of disease progression is likely mediated by perturbance in SA, JA, and, to some extent, gibberellic acid. The results further indicate that SA and JA in plant defense are not always necessarily antagonistic as most of the studies suggest but can be different, especially in woody perennials. Together, our results suggest that the changes in phytohormone levels, especially in terms of SA and JA content due to BK infection and progression in plums, could be used as phytohormonal markers in the identification of BK-resistant cultivars.

2.
Biotechnol Adv ; 34(4): 380-403, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26792590

RESUMO

Orchids (Orchidaceae) are one of the most diverse plant groups on the planet with over 25,000 species. For over a century, scientists and horticulturalists have been fascinated by their complex floral morphology, pollinator specificity and multiple ethnobotanical uses, including as food, flavourings, medicines, ornaments, and perfumes. These important traits have stimulated world-wide collection of orchid species, often for the commercial production of hybrids and leading to frequent overexploitation. Increasing human activities and global environmental changes are also accelerating the threat of orchid extinction in their natural habitats. In order to improve gene conservation strategies for these unique species, innovative developments of cryopreservation methodologies are urgently needed based on an appreciation of low temperature (cryo) stress tolerance, the stimulation of recovery growth of plant tissues in vitro and on the 'omics' characterization of the targeted cell system (biotechnology). The successful development and application of such cryobiotechnology now extends to nearly 100 species and commercial hybrids of orchids, underpinning future breeding and species conservation programmes. In this contribution, we provide an overview of the progress in cryobanking of a range of orchid tissues, including seeds, pollen, protocorms, protocorm-like bodies, apices excised from in vitro plants, cell suspensions, rhizomes and orchid fungal symbionts. We also highlight future research needs.


Assuntos
Criopreservação , Orchidaceae , Beleza , Espécies em Perigo de Extinção , Sementes
3.
PLoS One ; 8(10): e76802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116165

RESUMO

Oxidative browning is a common and often severe problem in plant tissue culture systems caused by the accumulation and oxidation of phenolic compounds. The current study was conducted to investigate a novel preventative approach to address this problem by inhibiting the activity of the phenylalanine ammonia lyase enzyme (PAL), thereby reducing the biosynthesis of phenolic compounds. This was accomplished by incorporating 2-aminoindane-2-phosphonic acid (AIP), a competitive PAL inhibitor, into culture media of Artemisia annua as a model system. Addition of AIP into culture media resulted in significant reductions in visual tissue browning, a reduction in total phenol content, as well as absorbance and autoflourescence of tissue extracts. Reduced tissue browning was accompanied with a significant increase in growth on cytokinin based medium. Microscopic observations demonstrated that phenolic compounds accumulated in discrete cells and that these cells were more prevalent in brown tissue. These cells were highly plasmolyzed and often ruptured during examination, demonstrating a mechanism in which phenolics are released into media in this system. These data indicate that inhibiting phenylpropanoid biosynthesis with AIP is an effective approach to reduce tissue browning in A. annua. Additional experiments with Ulmus americana and Acer saccharum indicate this approach is effective in many species and it could have a wide application in systems where oxidative browning restricts the development of biotechnologies.


Assuntos
Artemisia annua/metabolismo , Inibidores Enzimáticos/farmacologia , Fenol/metabolismo , Fenilalanina Amônia-Liase/antagonistas & inibidores , Proteínas de Plantas/antagonistas & inibidores , Acer/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Cor , Indanos/farmacologia , Microscopia de Fluorescência , Organofosfonatos/farmacologia , Oxirredução/efeitos dos fármacos , Fenol/química , Fenilalanina Amônia-Liase/metabolismo , Pigmentação/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Técnicas de Cultura de Tecidos/métodos , Ulmus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA